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Abstract—There is a direct correspondence between the integral equations of contact, (that is the equations
relating surface displacements to surface stresses), on a linearly elastic, homogeneous, transversely
isotropic half-space and those on a similar isotropic half-space. There is also a direct correspondence
between the equations for these problems, and those of contact between two transversely isotropic bodies.
Thus any solution, (that is surface stress distribution), of a problem of contact, (whether frictionless,
adhesive or frictional), between a rigid body and an isotropic half-space, gives a solution of the more
general problem.

1. INTRODUCTION

The philosophy behind many existing solutions of problems of contact between isotropic
bodies, is to find the unknown surface stresses directly from the known surface displacements
and ‘stresses by inversion of the integral equations of contact relating them. In this way we
avoid the need to consider the entire stress/displacement state in either body until the problem
has been reduced to a traction boundary value problem.

The equations of contact on a linearly elastic, homogeneous, isotropic half-space take very
simple forms for problems with axi-symmetric or two-dimensional geometries. For instance
Spence[14], has expressed them in the form

o) (%, & )G .

The K;; are integral operators and y and e elastic constants defined in the next section. Further
.P1, P2, W1, Uz are normal and tangential surface tractions and displacements respectively.

In the case of anisotropic materials, Dahan and Zarka[3], remark, ... the basic equations
are far more complicated and few resuits are known”. In this note it is shown that very similar
results hold in the more general case, that treated by Dahan and Zarka, in which the half-space
is transversely isotropic with preferred direction normal to the surface. In spite of the fact that
the number of parameters required to describe the behaviour of the half-space increases from 2
to 5, only one extra parameter appears in the equations of contact. Further the K;; are identical.
In place of (1.1) we obtain

w0e)= (ks ke Jio) 0

There are many ways of obtaining the integral equations of contact on an isotropic
half-space, but one of the most direct is that given by Spence[14]. He obtained the equations by
integrating the Green’s function, that is the oblique point-load solution, over an unknown
surface stress distribution. In the next section it is shown that since the point-load solution on a
transversely isotropic half-space differs only by the elastic constant multiplying the normal
stress in the normal displacement equation, the equations of contact differ only in this way.

The normal-point-load solution has been obtained in the past for a completely general
anisotropic material by Willis[20], and for a transversely isotropic material by Willis, Green and
Zerna[8), Chapter 5, and Lekhnitski[11]. The oblique-point-load is derived in Appendix A by
extending the method of Green and Zerna. The solution obtained in this paper shows a small
extension of that obtained by the above authors. In their case the elastic parameters, i.e. the
product ae, are indeterminate in the isotropic limit, (Willis eqns (6.2-4), Green and Zerna
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eqn (5.12.20)), whereas the form given here reduces simply to the isotropic value. Further
given the five surface parameters defined in the next section it is possible to calculate the five
elastic constants of the half space (Appendix B). This is not obviously true of the form obtained
by the above authors.

Equations (1.1) and (1.2), establish an isomorphism between the solutions of contact problems
for materials possessing different isotropies. Another such isomorphism exists for contact
between dissimilar materials linked by particular kinds of boundary conditions. It is well known
that certain cases of contact between two linearly elastic isotropic bodies with different
properties, are mathematically reducible to contact between one rigid and one elastic body. For
example, Mindlin{12], considers tangential contact, Goodman[6] and Spence[14], adhesive
normal contact, and Spence[16), frictional normal contact. By considering the oblique-point-
load solution, the Green’s function from which the contact equations are derived, it is shown in
Section 3 that this isomorphism continues to hold for contact between any two transversely
isotropic bodies, for which the preferred direction is normal to the surface, and for any
geometry.

Thus any solution of a problem of contact between a rigid and an isotropic body gives a
solution of the same problem of contact between two transversely isotropic bodies. This is
illustrated in Section 4 by considering adhesive normal contact.

2. THE EQUATIONS OF CONTACT ON A TRANSVERSELY ISOTROPIC HALF-SPACE
Consider a system of Cartesian coordinates (x, y, z) with r=(x, y) and 7= x?+ y% Let

u(r, 2), uy(r, z) and u,(r, z) 2.1
be the components of displacement,
ox(r, 2), o'yy(r' 2), O5,(r, 2), a'xy(r; 2), Uyz(ra 2), 05(r, 2) (2.2)
be the components of stress, and ¢,,(r, z), etc. be the components of strain. Consider also the
half-space z <0, with surface z = 0.
For a transversely isotropic material there are S independent, non-zero components of the

stiffness or compliance tensor. We use the engineering components of the compliance tensor
given by Lekhnitski[11]. This is expressed in terms of the compliance matrix, s;, by

i € 17 1 -y —wy ] PO’J
€y - b -wy Tyy
€: |_| “VW ~Wy A (2]
El e, 1™ A1+ ) o @3
2¢,; Al + ) Oy,
_2€xyj L 2(1 + VH)_J LOIUJ

The shear modulus in the Oxy-plane, Gy, is related to E and vy by isotropy in that plane,
Gy = EIQ2(1 + vy)). By analogy the shear modulus in the Oxy- and Oyz-planes, Gy, has been
written in terms of the parameter, v, Gy = E/(2(1 + »)).

It is shown in Appendix A that if a point force F=(Q,, Q,, P) acts at the origin on the
surface of a transversely isotropic half-space the resulting surface displacements are

U(r,0) y(x/r)P + Q, + 8(xInNT
(1/€)] uy(r,0) { = (1/27r)} ¥(yIr)P + Q, + 8(y/\T |t (2.4)
u,(r, 0) aP - T

tThe author in collaboration with D. A. Spence has since obtained the form of eqn (2.4), with four unknown constants,
a, v, 8, ¢, directly from similarity in the plane z=0. The material in z <0 was required only to be isotropic in the
Oxy-plane, and to obey Betti's reciprocal theorem and the principle of superposition. This did not give the form of the
clastic constants, a, etc. It is hoped to include this derivation in a joint article.

Introduction of a length scale, as in the case of an elastic body bounded by parallel pianes, destroys the similarity. We
do not therefore expect the isomorphism to extend to the layer effect described by Goodman and Keer[7].
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where T = (xQ, + yQ,)/r) and

A"sz 12
a"(]__,,ﬂ!)
=(l+v)—vv(l+v,.,)

B (]__ 2 ’

Vi

r= () G- @

-((5) () (=s)-)

(258 152)

For an isotropic material A=1 and v=wvy =w. Thus a=8=1, y=(1-20)/(2-2v»), 6=
M(1 - v) and € = (1 - »)/G. The point load solution for an isotropic half-space was obtained with
these values of the elastic constants by Landau and Lifshitz[10] eqn (8.19).

Spence obtains the integral equations of contact in the following way. Equation (2.4) has the
form

(1/eu(r) = G(r - s)F(s), (2.6)
so that the surface displacement corresponding to a surface stress distribution

a(r) = (0x:(r,0), 0y:(r, 0), 0:(r, 0))

is
(1/e)u(r) = L G(r-s)a(s)dS. .7

The region Sy is the region of surface over which the stress o is non-zero. For axi-symmetric
stress distributions we assume that surface stresses, p(r)=-—0.(r,0), q(r)=o0,(r,0), are
non-zero on a circle of contact r=<a. They are then related to the surface displacements,
w(r) = —u,(r,0), u(r) = u,(r,0) through the integral equations of contact,

(Heyw(r) = a fo ’ ki(r, s)p(s)s ds— vy fo ’ kix(r, s)q(s)s ds,
. . 2.8)
(1/e)u(r)=-y J; ka(r, s)p(s)s ds + fo ka(r, 5)q(s)s ds.

The kernels are given in terms of Bessel functions of the first kind by
ki, 9)= [ S i-os) do

These equations were previously derived by Nobel and Spence[13], in the isotropic case.

Likewise for two-dimensional stress distributions we assume that the surface stresses,
p(x) = —a,(x,0), g(x) = 7. (x, 0), are non-zero over a strip of contact, |x| < a, and find that they are
related to the surface displacements, w(x)=—u,(x,0), u(x)= u,(x,0) through the integral
equations

(e =2 [* BOL_ yqen),

, 29)
(llc)u'(x)=+w(x)+% ) %Q_Lg—’.
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These were previously derived by Galin[5], and in integrated form by Timoshenko and
Goodier[18}, in the isotropic case.
If we make the scaling

-2

p-ap, woa'®w, y>a'y 2.10)

eqns (2.8), (2.9) reduce immediately to their isotropic form. Thus the solution to a problem
whose boundary conditions involve linear equality or inequality conditions, including many
frictionless, adhesive or frictional contact problems, can be obtained from the corresponding
isotropic problem by a simple change in the coefficients.

Finally, many limiting solutions have been obtained on almost incompressible isotropic
half-spaces (see, e.g. Spence{l5, 16], Turner[19]). For an incompressible material » =3, or
¥ =0. If we can neglect the second term on the RHS of the first equation in (2.8) or (2.9) we
obtain the normal stress directly as the frictionless solution, Hertz[9]. If it can be further
demonstrated that u(r) or u'(x) is 0(y) then we find from the second of (2.8) or (2.9) that the
shear stress is 0(y). Thus the terms neglected are 0(y?). For most real materials, 0.25 < » <0.5,
y? is less than 0.1. For an incompressible transversely isotropic material A =2wy, and vy =
1 - vy Hence a = 1 and y =0, the same important result holding.

3. CONTACTBETWEEN TWO ELASTIC BODIES

We consider the problem of frictional contact between two elastic bodies. They are pressed
together so that they come in contact over a region, S, of their common surface (the smallest
typical dimension of which is denoted by a and assumed to be 0(1)). If the total relative
approach of the two bodies is wy, and is such that contact stress is 0(1) then wy is 0(e) where €
is defined by (2.5). If terms of 0(¢) can be ignored against terms of 0(1) then the two bodies may
be treated as linearly elastic. (Note that the linear elastic assumption requires that the
coordinate system of each body remain fixed with respect to the undeformed state of that body.
A relative displacement of the two bodies therefore involves a relative displacement of the two
coordinate systems.) If the smallest radius of curvature of the two bodies in the contact region
is R, such that the ratio (a/R) is 0(¢), then the equations may be applied to both bodies as if
they are half-spaces. This involves an approximation of 0(e'?). We now make this (common)
half-space approximation. (Note that this approximation is still valid if one of the bodies is rigid
and contains a finite number of corners in the contact region.)

Since the equations are linear the stress transmitted between the two half-spaces does not
depend on the absolute surface displacements of either body, but only on the relative
displacement of the two. Thus the problem of contact between two elastic bodies can be
transformed into that of contact between a rigid body and an elastic half-space. The elastic
properties of this half-space can be obtained as a combination of those of the original bodies,
and its surface displacements are the relative surface displacements. The transformation has
been deduced in the past from the isotropic form of (2.8) or (2.9) (see, e.g. Spence[17]).
However the transformation is valid for contact between two transversely isotropic bodies.
This is shown in this section by deriving it directly from the point-load solution. The
corresponding integral equations of contact can then be obtained by integrating the resultant
over the contact region Sy (eqn 2.7).

There is a further advantage in deriving the transformation directly from the point-load. It is
also the Green's function for the problem considered by England[4}, and Clements[1,2],
namely a crack between two half-spaces bounded over their entire common surface, z =0,
except in the region of the crack. Thus the surface stress distributions found by Clements for
transversely isotropic half-spaces could be deduced directly from those found by England for
isotropic half-spaces, and these could be calculated by considering a crack between an isotropic
and a rigid half-space.

The transformation is derived in the following way. Consider two half-spaces, i = 1,2, with
elastic parameters a', ', ¥, 8' and €. The surface displacement of the half-space, i, resulting
from a point load F' = (Q,', @', P') acting at the origin is, from eqn (2.5),
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ui(r,0) Y(xInP' + Q. + 8 (xinT'
u,'(r, 0) = 26—1;’ ‘y’(y/r)P' + Qyi + 8‘(y/r)T‘ (31)
u;(r, 0) aPi -y T ,

where T'=(xQ,+yQ,)/r). The normal is assumed positive out of each half-space. The
half-space i = | has a right-hand system of Cartesian, but { =2 a left-hand system. Thus the x-
and y-axis correspond but the z-axes are anti-parallel. If a point-load is transferred between
these two half-spaces static equilibrium requires that

P=P|=P2, Qx=Qxl=-sz’Qy=Q;=-Qg- (3.2
The relative surface displacement, with respect to the coordinates of body, i = 1, are

ue(r, 0) = u,(r, 0) — u,X(r, 0), u,(r,0) = u,\(r, 0) - u,Xr,0),

(3.3)

U,(r,0)= “zl(r’ 0)+ ll,z(l', 0).

By subtracting the first and second of each of eqns (3.1) and adding the third we find that the

relative surface displacements are related to the transferred point-load, F = (Q,, Q,, P), through
eqn (2.4) if

e=e'+€, ae=a'e' +a’e,
el mn2e2 e sl g 82,2 34)
ye=y'e —ye’, be=8'€ + 8%".

(The fifth coefficient 8 of course does not appear.) This is the transformation used extensively
in the literature for contact between isotropic bodies with axi-symmetric and two dimensional
geometries. In that case we obtain only the first and third of eqns (3.4). It was effectively used
first by Hertz[9], to show that normal contact between like materials is frictionless, y = 0.

Two points are noted.

(i) The problem of contact between two transversely isotropic half-spaces transforms into
one of contact between a rigid and an effective transversely isotropic half-space. The value of 8
remains to be chosen at will. It is shown in Appendix B that the elastic coefficient, E, A, », vy
and vy of the effective half-space can be calculated from the coefficients a, 8, v, 8 and e

(ii) If both materials are isotropic @ = a' = a?= 1, but in general y and & will not correspond
to an effective isotropic material. However & does not enter into the axi-symmetric or
two-dimensional equations so for these geometries an equivalent isotropic half-space can be
found.

4. EXAMPLE

It has been shown that the problem of contact between two transversely isotropic, linearly
elastic bodies for which the preferred direction is normal to the surface can be transformed into
an equivalent problem of a rigid body in contact with a transversely isotropic half-space, the
elastic properties of which can be obtained in terms of those of the original two bodies. It was
further shown that because the equations of contact on a transversely isotropic half-space differ
from those on an isotropic half-space only by the elastic constant multiplying the normal stress
in the normal displacement equation, the problem can be solved by considering only contact
between a rigid body and an isotropic one.

These ideas are illustrated by the solution of a simple example. That considered is the
normal adhesive contact of spheres. The isotropic problem was solved by Goodman[6)], and
later by Spence[14]. Spence’s solution to the idealized problem of a rigid sphere of radius, R,
indenting an isotropic half-space is recalled. The solution for a rigid sphere and a transversely
isotropic half-space follows immediately from the results of Section 2. Finally two spheres of
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radii, R, R, and elastic properties, a', a?, etc. are considered. The solution of adhesive contact
of two such spheres is obtained using eqns (3.2)-(3.4).

From similarity consideration Spence shows that if a sphere of radius R is pressed into a
half-space with conditions of adhesion over the interface, the normal and tangential displace-
ments take the following form in the contact region, r <a,

w(r) = W(1 - r[2R), u(r) = - WAP. @.n
The depth of penetration, W, is related to R and a, and the coefficient A is given in terms of the
elastic parameters of the half-space. Both are initially unknown, but are calculated from the
fact that the normal stress p(r) and tangential stress g(r) vanish on r = a.

Starting from the isotropic form of (2.8) Spence also shows that p(r) and g(r) obey a single
Fredholm equation. Defining f(p) by

fp)=p(p)-G(p), (4.2)
where p(p) and §(p) are the Hankel transforms
plp)= f p(r)MJopr)rdr, G(p) = f ‘ q(nJi(pr)rdr,
0 0

he shows that f(p) satisfies the equation
10+ 61 | Ko-0)(0)do = e, 43)

where
¢=2-4v=02y/(1-7),
¢:=(4GIm)=Qlen(1-1v)),
k(p) = sin p/mp,

cp)= J; ’ (w*(s) cos ps — u*(s) sin ps) ds,

_d {7 w(s)sds _ " (su(s)) ds
M S Car L N e

Spence inverts eqn (4.3) by the Weiner-Hopf technique to show that

@, 4 D23

= = - )12
w 8OR’ A 6 3y (1-99", (4.4
where
1 1 [1+y
k=—In(1+¢)= w'“{l _.,}’

6(x)=1-0.6931x2+0.2254x* + - - .

He also obtains integral expressions for p(r) and q(r), which will not be quoted, and an
expression for the total normal force P,

P= J; ’ p(r)2nr)dr.



Contact on a transversely isotropic half-space, or between two transversely isotropic bodies 415

Table 1. Parameters for three materials, I: isotropic, » = 0.2, II; t-isotropic, A = 1.66, vy =0.2, v, =0.16,
v =0.25, 11I; t-isotropic, A =0.6, vy =0.2, », =0.16, v=0.25

I 11 I11
. 0.25097 0.27608 0.23527
[} 0.95724 0.94848 0.96233
A 0.10381 0.11358 0.09761
(3cPR/47a%) 0.69926 0.51812 0.86015

In fact

_4¢m’a’ k. 3ePR _
P= R 6 or 73 = (x/¥y). 4.5)

With isotropy in the Oxy-plane, the same similarity arguments can be applied to a trans-
versely isotropic material, so the displacement conditions (4.1) continue to hold. Further
defining f(p) by

f(p)=a'?p(p) - q(p), (4.6)

it is deduced from (2.10), that for a transversely isotropic half-space (4.3) holds, but with ¢, and
&, given by

_ 2 _ 2
o= ;—my_jr, $ = era® =y 4.7

Thus Spence’s solution is a solution in the transversely isotropic case with

A =%L;(a - iR

1 fa+ 'y}
K= ln{;mf; , 4.8)
and
3e¢PR

Values of x, 6, A and (3¢PR/4mra’) are tabulated in Table 1 for 3 materials; I, an isotropic
material, »=0.2; II, a transversely isotropic material weaker in the preferred direction,
A=1.66, vy =02, vy =0.16, »=0.25, (London Clay); IIl, stiffer in the preferred direction,
A =06, vy =02, vy =0.16, » =0.25.

Using (3.2)-(3.4) it is deduced that the solution to the problem of contact between two
different spheres is equivalent to the problem of contact between a rigid sphere of radius,
R = R,R;/(R, + R;), and a half-space whose elastic parameters are related to those of the two
spheres through (3.4). The solution is given by (4.8). Finally, if the half space is incompressible
v =k =0. However the ratio (x/y) is finite. In fact

k_{ 2
*={ram} 49
whence
W =(a*R), A=0,
and
_8a®
P= IR (a-1).

These are the frictionless values, Hertz[6].
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APPENDIX A
Derivation of the oblique-point-load solution on a transversely isotopic half-space
Al Potential function formulation. To obtain the point-load solution the constitutive equation is written in terms of the
stiffness tensor, (Green and Zerna|8), eqn 5.12.1),

Oxx Cii €2 Cp3 €xy

Tyy € Cu O3 &y
1 [ Ou|=]|€B C3 Cn € (AD)
E Oz Cu 2¢,,

Ty, Cu 2‘72

Tyy %(cll - cll) 2€xy

The components of the stiffness tensor can be found in terms of those of the compliance tensor by inversion of (2.3).
Defining now the Cartesian displacement vector as (i, v, w), we obtain the equations relating the displacement of a
transversely isotropic body, given by Green and Zerna, (5.12.3-5),

a* 7 aw
[%(Cn ~ )Vt + C“;?]“ +3;[£(Cn +c)u+(cnt Cu)'a‘;] =0, (A2)
Yen- eVt +c "z]wi[;(c +Ciby +(Cint ﬂ]=o (A3)
" 12JVH “Ei ay 1 [} H 13 44, az 'y
[c V4 e "2]w+i[(c,,+c‘.m ]=o (Ad)
“UYH ﬂ'&f az H 'y
where

? . & ou  dv

2 = —

Vi _-B-X-i+3—y’ and Ay 3X+8y'

Green and Zerna derive a potential function formulation of these equations. They show that a general solution to (A2)-(A4)
is given by

_3, 0y iy
“‘ax+ax+ay' (AS)
L% it it
- 6y+ay ax’ (A6)

W= k]i? + kz'aﬁ (A7)
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where
a'.'
(VH’+ v,;;g)d}.- =0,i=1,2,3,(no sum implied). (A8)

In eqns (AS)-(A8), v, and v, are the roots of the quadratic equation
alv~28v+1=0, (A9
where
a?=(eyfen)

p=Cun= ch-2encu
2Cucy ’
and », is given by

2C“
cn-cp

=

After inversion of (2.3) it is possible to show that a and 8 are as defined in (2.5). Finally k; and k; are the roots of the
quadratic equation

2
’+[2- Cnczs-t‘u} +1=0, Al0
k Calesy+ cu) k+1=0 A0

and are related 1o »; and », by

Cuvi—Cu (Cntculy _,

CatCu  Cn—Can " (AlD
or
ket cul+eu kicyy -
i (Cot )t ke (A1)
Two points are noted,
(a) The functions ¢, { = 1,2,3 are not true potential functions, but obey the equation
@2 2 F? .
Viei= (;,;ﬁa—yﬁ;g)qu =0,i=1,2,3 no sum, (A13)
where 2 = zlp; and g, = V(1) with positive real part. Solving (A9) gives
pr=(Ue)V(B + V(B - a¥), uy = (la)V(B - V(B - a?), (A14)
whence
pip2=(lla) and py+ 2 = (/a)V2AB + ).
(b) The parameters vy, 1y, &k, and k; obey the following relations
=Lutn-¢ b
(1+ kX1 +ky) et (AlS)
_p = Culpd = )
ki—ky tntca (A16)
mk‘_mkzg(ﬂt"ﬂﬂc(ﬁlﬂzcrx*c«)' (A7)
13F Cu

Equation (A15) follows from (A10), (A16) is obtained by subtracting the two eqns (A11), and (A17) by multiplying by 3
and g, respectively, and then subtracting.

The six corresponding components of the stress tensor are given by Green and Zerna (5.12.15-16). The three of interest
are o,,, 0,, and o, Using eqn (A12) we obtain

2 2

a,,-sc..[y.(nk,)fa-z‘ﬁu y,a+k,)"—az%!]. (A18)
. 7, 7 a’es;]

O sc“[(1+k,)3£§;+(1+k,)£+m, (Al9)
. i ¢ 8 ,]

o Ec“[au.b-y%ﬂuwﬁ-ag;. (A20)
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We are now in a position to obtain the displacements corresponding to point normal and tangential loads acting at the

origin,
A2 The Boussinesq solution. If ®,(x, y, 2) is a potential function satisfying
3%, 62¢; 8 d);
Vo =TTt T = 0.

then putting

¢:=i( )‘bs(&)’: o ‘ﬁz'—”( ) WX,y ), #3=0,

where
x = Eculp, - u2),

gives on the surface z =0, 0,,(r,0) = 0,,(r,0) = 0, and
7.1, 0) =%’-’(r. 0.
This is the Boussinesq solution. Using (AI15)-{A17) and the inverse of (2.3) we show that

w(r,0)= ae l(r, 0),
_ 0
“(rv 0) =y ax ](r0 0)'

__ad
v(r,0) =y 3y (e, 0).
The potential corresponding to a point force P acting at the origin on the half-space z<( is

Oix, v, 2) = ~2£’; In(R - 2),

where R =V(r* + 2%), r* = x* + y. The surface displacements are the corresponding terms of (2.4).

A3 The Cerrati solution. 1 ®yx, y, 2) is 2 function satisfying V2®, = 0, then putting

____1__(1 %, __1_(1)3@2
él*a“ —"H_kl ax X,)”Zs),tﬁz—ax “‘—H_kz M X, ¥ 22,
o 3
& Ec“T'a‘;( L ¥, 23)
where u3 = \/(v;) and 2; = 2/, gives on the plane 2 =0, 0..(r, 0) = 0, (r, 0) = 0 and

3
Ox(r,0) = %—%(r. 0).

This is the Cerruti solution. The surface displacements are

w(r,0)= 67%:3,

3
ulr,0)= e[%-‘ 6%2%2-},
oir,0)= -58%.

The potential corresponding to a point tangential load is
¢, = -%(z In{R-2)+ R),

the surface displacements being the corresponding terms jn (2.4).

The general solution is completed by putting
L) e L(L )0
é'-cx(H-k, ay X,)‘,Zx),@' ‘+k3 3y xlfvzl)'

b= &(x' ¥ 2

with &3 = —(QJ27) (z In{R + z) + R) comesponding to the point load in the y-direction.

{A21)

(A22)

(A23)

(A24)

(A26)

(A2Ty

(A28)

(A29)

(A30)

(A3])

(A3)
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APPENDIX B
The components of the compliance tensor

Given observed or calculated values of the elastic parameters a, B, v, § and ¢, the components of the compliance tensor
E, A, vy, vy and » can be calculated in the following way:

(|—u,,)=(?f'—”,(;§73).

(ll—+v:z) =p=8+m.

() et

A=all-ud)+nd

E= (#)II!Z“ _evﬂz)

The components of the stiffness tensor can then be calculated by inversion of (2.3).
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